Vol. 25 No. 3 (2015)
Artículos de Investigación

Design and simulation of an optimized electrothermal microactuator with Z-shaped beams

Margarita Tecpoyotl Torres
Universidad Autónoma del Estado de Morelos
Bio
Ramón Cabello Ruiz
Universidad Autónoma del Estado de Morelos
Bio
José Gerardo Vera Dimas
Universidad Autónoma del Estado de Morelos
Bio

Published 2015-07-03

Keywords

  • MEMS,
  • chevron,
  • electrothermal,
  • displacement.
  • MEMS,
  • chevrón,
  • electrotécnico,
  • desplazamiento.

How to Cite

Tecpoyotl Torres, M., Cabello Ruiz, R., & Vera Dimas, J. G. (2015). Design and simulation of an optimized electrothermal microactuator with Z-shaped beams. Acta Universitaria, 25(3), 19–24. https://doi.org/10.15174/au.2015.774

Abstract

The displacement of the central shuttle of a Z-shape chevron actuator can be calculated using a developed approach from other authors. Who demonstrated that the actuators with this geometry offer a larger displacement compared with V-shape actuators. Z-shape offers a larger stiffness and output force for the case of only one arm.  This paper is focused on the optimization of the Z-shaped beams of a chevron actuator of eight beams, which seeks to increase the previously described response. The structure is designed in parametric solid modeling 3D software Autodesk Inventor, and simulated by finite element method in Ansys 15.0. These simulations were implemented considering several modifications on the length of the Z-shaped beams in order to choose the most appropriate length. The electric potential applied in all cases was from 0.2 V up to 5 V. The Z-shape length of the arms for the case of the optimized Z-shape actuator increases the shuttle’s displacement in approximately 50% compared to V-shape actuator, and 38% compare to the original Z-shape. Analytical adjusted approach is extremely matched with the simulations results. Length of the Z-shape beam is the determinant factor of the displacement. The low stiffness of the optimized Z-shape actuator (89% lower than the original V-shape and 58% compared to Z-shape) can allow its use as load sensor. 

References

  1. Callón, J. (N. D.). Silicio-Propiedades del silicio. Recuperado en 2014 de http://elementos.org.es/silicio


  2. Cao, C., Chen, B., Filleter, T. & Sun, Y. (January, 2015). Mechanical Characterization Of Thin Films Using A Mems Device Inside Sem. IEEE. Microelectromechanical Systems (MEMS), 978, 381-384. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7050969&tag=1


  3. Chow, J. & Lai, Y. (2009). Displacement sensing of a micro-electro-thermal actuator using a monolithically integrated thermal sensor. Sensors Actuators A, 150(1), 137-143.


  4. Cragun, R. & Howell, L. L. (1999). Linear Thermomechanical Microactuators. Proccedings Of ASME International Mechanical Engineering Congress and Exposition, Microelectromechanical Systems (MEMS), Nashville, TN, USA, 1419,181-188.


  5. Dong, J. & Ferreira, P. M. (2008). Simultaneous actuation and displacement sensing for electrostatic drives. Journal of Micromechanics and Microengineering, 18(3), 035011.


  6. Guan, C. & Zhu, Y. (2010). An electrothermal microactuator with Z-shaped beams. Journal of Micromechanics and Microengineering, 20(8), 085014. http://elementos.org.es/silicio


  7. Rakotondrabe, M., Fowler, A. G. & Moheimani, S. R. (2014). Control of a Novel 2-DoF MEMS Nanopositioner With Electrothermal Actuation and Sensing. IEEE Trasanctions On Control Systems Tecnology IEEE Transactions on, 22(4), 1486-1497.


  8. Varona, J., Tecpoyotl-Torres, M. & Hamoui, A. A. (2009). Design of MEMS vertical-horizontal chevron thermal actuators. Sensors and Actuators A: Physical, 153(1), 127-130.


  9. Zhu, Y. & Espinosa, H. D. (2005). An electro-mechanical material testing system for in situ electron microscopy and applications, Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14503-14508.


  10. Zhu, Y., Corigliano, A. & Espinosa, H. D. (2006). A thermal actuator for nanoscale in situ microscopy testing: design and characterization. Journal of Micromechanics and Microengineering, 16(2), 242.


  11. Zhu, Y., Moheimani, S. R. & Yuce, M. R. (2012). Bidirectional Electrothermal Actuator with Z-Shaped Beams. Sensors Journal, IEEE, 12(7), 2508-2509.