Vol. 26 No. 2 (2016)
Artículos de Investigación

Flow shortfall analysis in a forced-draft fan: proposals of geometrical changes for the original design

A. Zaleta-Aguilar
Universidad de Guanajuato
Bio
J. M. Belman-Flores
Universidad de Guanajuato
Bio
J. P. Pérez-Trujillo
Universidad de Guanajuato
Bio
L. A. Álvarez-Vargas
Universidad de Guanajuato
Bio
S. A. Gámez-Arredondo
Universidad de Guanajuato
Bio

Published 2016-05-17

Keywords

  • Centrifugal fan,
  • thermodynamic analysis,
  • simulation,
  • CFD,
  • flow.
  • Ventilador centrífugo,
  • análisis termodinámico,
  • simulación,
  • CFD,
  • flujo.

How to Cite

Zaleta-Aguilar, A., Belman-Flores, J. M., Pérez-Trujillo, J. P., Álvarez-Vargas, L. A., & Gámez-Arredondo, S. A. (2016). Flow shortfall analysis in a forced-draft fan: proposals of geometrical changes for the original design. Acta Universitaria, 26(2), 43–54. https://doi.org/10.15174/au.2016.991

Abstract

This paper presents fluid dynamic analysis through computational fluid dynamics (CFD) in a forced draft fan which has been modified from its original design due to its lack of volumetric flow observed during its operation. The analysis started with thermodynamic characterization of the fan, beginning from the proposed geometrical modifications like the increase of the blade size and the diameter of the rotor, achieving a flow of 8800 m3/min. Next analysis is related to influence of speed and pressure of the air flow to the fan outlet due of the increase of angular speed and potential. An angular speed of 1185 rpm and a discharge speed of 25m/s were obtained from the analysis with a total pressure of 5.44 kPa; while at the proposed angular speed, these values are closed to 30m/s and 7.5 kPa. With aim to verify that the proposed modifications do not damage the fan by vibration, a finite element analysis was developed with purpose of finding natural frequencies and vibration modes. For an operation frequency of 19.75Hz (1185 rpm), 4 natural frequencies were obtained in the analysis, in which the closest frequencies are of 18.52 Hz and 18.58 Hz, which are barely below the operation frequency. This study concluded that the proposed modifications to the geometry of the fan are adequate for its operation. 


References

  1. Chunxi, L., Song Ling, W., & Yakui, J. (2011). The performance of a centrifugal fan with enlarged impeller. Energy Conversion and Management, 52(8-9), 2902-2910.


  2. Datong, Q., Yijun, M., Xiaoliang, L., & Minjian, Y. (2009). Experimental study on the noise reduction of an industrial forward-curved blades centrifugal fan. Applied Acoustics, 70(8), 1041-1050.


  3. Engin, T., Gur, M., & Scholz, R. (2006). Effects of tip clearance and impeller geometry on the performance of semi-open ceramic centrifugal fan impellers at elevated temperatures. Experimental Thermal and Fluid Science, 30(6), 565-577.


  4. Fernández Oró, J. M., Pereiras García, B., González, J., Argüelles Díaz, K. M., & Velarde Suárez, S. (2013). Numerical methodology for the assessments of relative and absolute deterministic flow structures in the analysis of impeller-tongue interactions for centrifugal fans. Computers & Fluids, 86(5), 310-325.


  5. González Pérez, J., Santolaria Morros, C., Blanco Marigorta, E., & Fernández Francos, J. (2004). Modelización numérica del flujo en bombas centrífugas. DYNA, 79(5), 11-17.


  6. Hernández-Gutiérrez, I. V., Barbosa-Saldaña, J. G., Gutiérrez-Torres, C. C., Jiménez-Bernal, J. A., Moreno-Pacheco, L. A., & Quinto-Diez, P. (2015). Simulación numérica de la convección mixta en un canal horizontal con aletas. DYNA, 90(4), 433-441.


  7. Lamas-Galdo, M. I., Rodríguez-Vidal, C. G., & Rodríguez García, J. D. (2013). Modelo de mecánica de fluidos computacional para el estudio de la combustión en un motor diésel de cuatro tiempos. DYNA, 88(1), 91-98.


  8. Min, J. B., Duffy, K. P., Choi, B. B., Provenza, A. J., & Kray, N. (2013). Numerical modeling methodology and experimental study for piezoelectric vibration damping control of rotating composite fan blades. Computers and Structures, 128, 230-242.


  9. Schobeiri, M. T. (2003). Turbomachinery Flow Physics and Dynamic Performance (2nd edition). USA: Springer.


  10. Sheam-Chyun, L., & Chia-Lieh, H. (2002). An integrated experimental and numerical study of forward-curved centrifugal fan. Experimental Thermal and Fluid Science, 26(5), 421-434.


  11. Sheam-Chyun, L., & Ming-Lun, T. (2012). An integrated performance analysis for a backward-inclined centrifugal fan. Computers & Fluids, 56 , 24-38.


  12. Sinha, S. K., & Turner, K. E. (2011). Natural frequencies of a pre-twisted blade in a centrifugal force field. Journal of Sound and Vibration, 330(11), 2655-2681.


  13. Staats, W. L., & Brisson, J. G. (2015). Active heat transfer enhancement in air cooled heat sinks using integrated centrifugal fans. International Journal of Heat and Mass Transfer, 82, 189-205.


  14. Stafford, J., Walsh, E., & Egan, V. (2012). The effect of global cross flows on the flow field and local heat transfer performance of miniature centrifugal fans. International Journal of Heat and Mass Transfer, 55(7-8), 1970-1985.


  15. Tahsin, E., Mesut, G., & Reinhard, S. (2006). Effects of tip clearance and impeller geometry on the performance of semi-open ceramic centrifugal fan impellers at elevated temperatures. Experimental Thermal and Fluid Science, 30(6), 565-577.