La descomposición de la hojarasca de Ochroma pyramidale (Malvaceae)
PDF
XML

How to Cite

Morón Ríos, A., & Levy Tacher, S. (2023). La descomposición de la hojarasca de Ochroma pyramidale (Malvaceae). Acta Universitaria, 33, 1–13. https://doi.org/10.15174/au.2023.3856

Abstract

The tree Ochroma pyramidale is used to recover jungle areas that have been cultivated.  This native species generates a thick layer of leaf litter that remains for several years. The objectives of this study were: 1) to know how much leaf litter is produced, 2) to estimate how long it persists in the soil, and 3) to identify the role of soil fauna in its decomposition. Leaf litter production was estimated at 11 Mg/ha/year, while over the course of 13 years the biomass and depth of the leaf litter layer measured in three sites previously planted with Ochroma showed a decrease of over 60%. In a leaf litter decomposition experiment, 37% of biomass was lost in 180 days. Soil mesofauna reduced the concentration of cellulose in leaf litter, while lignin decreased due to the time of permanence of the leaf litter in the soil. The high C:N proportion of the leaves, together with high lignin concentrations, could explain the low levels of loss and accumulation of biomass.

https://doi.org/10.15174/au.2023.3856
PDF
XML

References

Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439–449. https://doi.org/10.2307/3546886

Aide, T. M., Zimmerman, J. K., Pascarella, J. B., Rivera, L., & Marcano-Vega, H. (2001). Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restoration Ecology, 8(4), 328–338. http://dx.doi.org/10.1046/j.1526-100x.2000.80048.x

Álvarez-Sánchez, J., & Becerra-Enríquez, R. (1996). Leaf decomposition in a Mexican tropical rain forest. Biotropica, 28(4), 657-667. http://dx.doi.org/10.2307/2389052

Berg, B. (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133(1-2), 13–22. http://dx.doi.org/10.1016/S0378-1127(99)00294-7

Cadish, G., & Giller, K.E. (1997). Driven by nature. Plant litter quality and decomposition. CAB International.

Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53(2), 209–233. http://dx.doi.org/10.2307/1942495

Cusack, D., & Montagnini, F. (2004). The role of native species plantations in recovery of understory woody diversity in degraded pasturelands of Costa Rica. Forest Ecology and Management, 188(1-2), 1–15. http://dx.doi.org/10.1016/S0378-1127(03)00302-5

Denslow, J. S., & Guzman, S. (2000). Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama. Journal of Vegetation Science, 11(2), 201–212. http://dx.doi.org/10.2307/3236800

Diemont, S. A. W., Martin, J. F., Levy-Tacher, S. I., Nigh, R. B., Ramirez, P., & Golicher, J. D. (2006). Lacandon Maya forest management: restoration of soil fertility using native tree species. Ecological Enginering, 28(3), 205–212. http://dx.doi.org/10.1016/j.ecoleng.2005.10.012

Douterlungne, D., Levy-Tacher, S. I., Golicher, D. J., & Román, F. (2010). Applying indigenous knowledge to the restoration of degraded tropical rain forest clearings dominated by bracken fern. Restoration Ecology, 18(3), 322–329. http://dx.doi.org/10.1111/j.1526-100X.2008.00459.x

Finegan, B. (1996). Pattern and process in neotropical secondary rainforests: the first 100 years of succession. Trends in Ecology and Evolution, 11(3), 119–124. https://doi.org/10.1016/0169-5347(96)81090-1

Francis, J. K. (1991). Ochroma pyramidale Cav.: Balsa, Bombacaceae, Bombax Family.

Institute of Tropical Forestry, USDA.

Frouz, J., Roubíckova, A., Hedenec, P., & Tajovský, K. (2015). Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. European Journal of Soil Biology, 68, 18-24. http://dx.doi.org/10.1016/j.ejsobi.2015.03.002

Goma-Tchimbakala, J., & Bernhard-Reversat, F. (2006). Comparison of litter dynamics in three plantations of an indigenous timber-tree species (Terminalia superba) and a natural tropical forest in Mayombe, Congo. Forest Ecology and Management, 229(1-3), 304-313. https://doi.org/10.1016/j.foreco.2006.04.009

Gunina, A., & Kuzyakov, Y. (2022). From energy to (soil organic) matter. Global Change Biology, 28(7), 2169–2182. http://dx.doi.org/10.1111/gcb.16071

Hättenschwiler, S., & Bracht, H. (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 98(4), 754–763. http://dx.doi.org/10.1111/j.1365-2745.2010.01671.x

Heděnec, P., J. J. Jiménez, J. Moradi, X. Domene, D. Hackenberger, S. Barot, A. Frossard, L. Oktaba, J. Filser, P. Kindlmann & Frouz, J. (2020). Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Scientific Reports, 12, 17362. https://doi.org/10.1038/s41598-022-21563-z

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Colin, I., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar, C., Aleixo, I., Ali, H., Amiaud, B.,… & Wirth, C. (2020). TRY plant trait database - enhanced coverage and open access. Global Change Biology, 26(1), 119-188. https://doi.org/10.1111/gcb.14904

Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment, 2(4), 236–249. http://dx.doi.org/10.1007/s40974-017-0064-9

Lamb, D., Erskine, P. D., & Parrotta, J. A. (2005). Restoration of degraded tropical forest landscapes. Science, 310(5754), 1628–1632. http://dx.doi.org/10.1126/science.1111773

Levy-Tacher, S. I., & Golicher, D. J. (2004). How predictive is traditional ecological knowledge? The case of the Lacandon Maya fallow enrichment system. Interciencia, 29(9), 496-503. http://ve.scielo.org/scielo.php?pid=S0378-18442004000900005&script=sci_arttext&tlng=en

Levy-Tacher, S. I., Vleut, I., Román-Dañobeytia, F., & Aronson, J. (2015). Natural regeneration after long-term bracken fern control with balsa (Ochroma pyramidale) in the neotropics. Forest, 6(6), 2163-2177. http://dx.doi.org/10.3390/f6062163

Milton, K. (1979). Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores. The American Naturalist, 114(3), 362-378. https://www.journals.uchicago.edu/doi/abs/10.1086/283485

Montagnini, F., Ramstad, K., & Sancho, F. (1993). Literfall, litter decomposition and the use of mulch of four indigenous tree species in the Atlantic lowlands of Costa Rica. Agroforestry Systems, 23, 39-61. https://doi.org/10.1007/BF00704850

Montaña, C., Ezcurra, E., Carrillo, A., & Delhoume, J. P. (1988). The decomposition of litter in grasslands of northern Mexico: a comparison between arid and non-arid environments. Journal of Arid Environments, 14(1), 55-60. https://doi.org/10.1016/S0140-1963(18)31096-6

Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322-331. https://doi.org/10.2307/1932179

Park, A, & Cameron, J. L. (2008). The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. Forest Ecology and Management, 255(5-6), 1915–1925. http://dx.doi.org/10.1016/j.foreco.2007.12.025

Pearson, T. R. H., Burslem, D. F. R. P., Goeriz, R. E., & Dalling, J.W. (2003). Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought and herbivory on growth and survival. Oecologia, 137, 456–465. http://dx.doi.org/10.1007/s00442-003-1361-x

Poorter, L. (1999). Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology, 13(3), 396–410.

http://dx.doi.org/10.1046/j.1365-2435.1999.00332.x

Preston, C. M., Trofymow, J. A., & the Canadian Intersite Decomposition Experiment Working Group. (2000). Variability in litter quality and its relationship to litter decay in Canadian forests. Canadian Journal of Botany, 78, 1269–1287. http://dx.doi.org/10.1139/b00-101

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Saldarriaga, J. G., West, D. C., Tharp, M. L., & Uhl, C. (1988). Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology, 76(4), 938–958. http://dx.doi.org/10.2307/2260625

Sánchez-Solis, I. (2010). Producción de hojarasca y descomposición de materia orgánica de cuatro especies arbóreas de Selva baja Caducifolia en una plantación de Zacatepec, Morelos [Undergraduate thesis in Biology]. School of Sciences, National Autonomous University of Mexico.

Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews, 81(1), 1–31. http://dx.doi.org/10.1017/S1464793105006846

Seiwa, K., & Kikuzawa, K. (1996). Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species. Vegetatio, 123, 532–538. http://dx.doi.org/10.1007/BF00044887

Servicio Meteorológico Nacional-Comisión Nacional del Agua (SMN-Conagua). (2022). Normales climatológicas por estado. Chiapas. Periodo 1981–2010. Gobierno de México. https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=chis

Steffen, K. T., Cajthaml, T., Snajdr, J., & Baldrian, P. (2007). Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Research in Microbiology, 158(5), 447-455. https://doi.org/10.1016/j.resmic.2007.04.002

Trofymow, J. A., Moore, T. R., Titus, B., Prescott, C., Morrison, I., Siltanen, M., Smith, S., Fyles, J., Wein, R., Camiré, C., Duschene, L., Kozak, L., Kranabetter, M., & Visser, S. (2002). Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research, 32, 789–804. http://dx.doi.org/10.1139/x01-117

Vasconcelos, H. L., & Laurance, W. F. (2005). Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia, 144, 456-462. http://dx.doi.org/10.1007/s00442-005-0117-1

Vázquez-Yanes, C., & Orozco-Segovia, A. (1992). Effects of litter from a tropical rainforest on tree seed germination and establishment under controlled conditions. Tree Physiology, 11(4), 391–400. http://dx.doi.org/10.1093/treephys/11.4.391

Vleut, I., Levy-Tacher, S. I., de Boer, W. F., Galindo-González, J., & Ramírez-Marcial, N. (2013). Can a fast growing early successional tree (Ochroma pyramidale, Malvaceae) accelerate forest succession?. Journal of Tropical Ecology, 29(2), 173-180. http://dx.doi.org/10.1017/S0266467413000126

Wang, W., Zhang, Q., Sun, X., Chen, D., Insam, H., Koide, R. T., & Zhang, S. (2020). Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biology and Biochemistry, 141, 107690. https://doi.org/10.1016/j.soilbio.2019.107690

Whitmore, T. C. (1978). Gaps in the forest canopy. In B. P. Tomlinson & M. H. Zimmermann (eds.), Tropical trees as living systems (pp. 639-656). Cambridge University Press.

Wider, R. K., & Lang, G. E. (1982). A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology, 63(6), 1636-1642. https://doi.org/10.2307/1940104

Wieder, W. R., Cleveland, C. C., & Townsend, A. R. (2009). Controls over leaf litter decomposition in wet tropical forests. Ecology, 90(12) 3333–3341. http://dx.doi.org/10.1890/08-2294.1

World Reference Base. (2015). Base referencial mundial del recurso suelo 2014, Actualización 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos 106. FAO.https://www.fao.org/3/i3794es/I3794es.pdf

Xuluc-Tolosa, F. J., Vester, H. F. M., Ramírez-Marcial, N., Castellanos-Albores, J., & Lawrence, D. (2003). Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management, 174(1-3), 401-412. https://doi.org/10.1016/S0378-1127(02)00059-2

Zhang, D., Hui, D., Luo, Y., & Zhou, G. (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1(2), 85-93. https://doi.org/10.1093/jpe/rtn002